Anna: A KVS For Any Scale
نویسندگان
چکیده
Modern cloud providers offer dense hardware with multiple cores and large memories, hosted in global platforms. This raises the challenge of implementing high-performance software systems that can effectively scale from a single core to multicore to the globe. Conventional wisdom says that software designed for one scale point needs to be rewritten when scaling up by 10−100× [1]. In contrast, we explore how a system can be architected to scale across many orders of magnitude by design. We explore this challenge in the context of a new keyvalue store system called Anna: a partitioned, multi-mastered system that achieves high performance and elasticity via waitfree execution and coordination-free consistency. Our design rests on a simple architecture of coordination-free actors that perform state update via merge of lattice-based composite data structures. We demonstrate that a wide variety of consistency models can be elegantly implemented in this architecture with unprecedented consistency, smooth fine-grained elasticity, and performance that far exceeds the state of the art.
منابع مشابه
Fast Scans on Key-Value Stores
Key-Value Stores (KVS) are becoming increasingly popular because they scale up and down elastically, sustain high throughputs for get/put workloads and have low latencies. KVS owe these advantages to their simplicity. This simplicity, however, comes at a cost: It is expensive to process complex, analytical queries on top of a KVS because today’s generation of KVS does not support an efficient w...
متن کاملBlueCache: A Scalable Distributed Flash-based Key-value Store
A key-value store (KVS), such as memcached and Redis, is widely used as a caching layer to augment the slower persistent backend storage in data centers. DRAM-based KVS provides fast key-value access, but its scalability is limited by the cost, power and space needed by the machine cluster to support a large amount of DRAM. This paper offers a 10X to 100X cheaper solution based on flash storage...
متن کاملKv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders
Members of the electrically silent voltage-gated K(+) (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K(+) channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subuni...
متن کاملEfficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device
BACKGROUND Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. METHODS In Experiment...
متن کاملElectrically silent Kv subunits: their molecular and functional characteristics.
Electrically silent voltage-gated potassium (KvS) α-subunits do not form homotetramers but heterotetramerize with Kv2 subunits, generating functional Kv2/KvS channel complexes in which the KvS subunits modulate the Kv2 current. This poses intriguing questions into the molecular mechanisms by which these KvS subunits cannot form functional homotetramers, why they only interact with Kv2 subunits,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018